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Prediction of the noise transmitted from machinery and ¯ow sources on a
submarine to the sonar arrays poses a complex problem. Vibrations in the
pressure hull provide the main transmission mechanism. The pressure hull is
characterised by a very large number of modes over the frequency range of
interest (at least 100,000) and by high modal overlap, both of which place its
analysis beyond the scope of ®nite element or boundary element methods. A
method for calculating the transmission is presented, which is broadly based on
Statistical Energy Analysis, but extended in two important ways: (1) a novel
subsystem breakdown which exploits the particular geometry of a submarine
pressure hull; (2) explicit modelling of energy density variation within a subsystem
due to damping. The method takes account of ¯uid±structure interaction, the
underlying pass/stop band characteristics resulting from the near-periodicity of
the pressure hull construction, the e�ect of vibration isolators such as bulkheads,
and the cumulative e�ect of irregularities (e.g., attachments and penetrations).

# 1999 Crown Copyright

1. INTRODUCTION

This paper is concerned with noise levels at sonar arrays which are positioned on
the forward ¯anks and the bow of a submarine. Potentially signi®cant noise
sources can include the propulsor, other machinery internal to the submarine,
and the external ¯ow. The principal machinery sources are mostly sited well aft
of the arrays. The estimation of the noise transmitted from these sources to the
arrays, over a wide range of frequencies, poses a complex prediction problem. It
is worth making three initial observations.
(1) For all these noise sources, the pressure hull itself provides the most

important structural transmission path to the arrays, as opposed to any pathway
through the internal structure such as decks. This is mainly due to the large
impedance mismatch at all junctions with the pressure hull, combined with the
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complex nature of these internal structures. (This internal ``fuzzy structure'' may,
however, contribute to the effective structural damping of the pressure hull [1, 2])
On the pressure hull, both ¯exural-like waves and in-surface waves (compression
and shear) provide potentially important transmission mechanisms.
(2) The pressure hull is made up of a cylindrical shell braced against external

pressure by circumferential T-section frames. The frames are fairly regularly
spaced axially, and they are substantial enough to present a signi®cant
impedance to the pressure hull. They produce a characteristic pass- and stop-
band frequency variation of the structure-borne transmission [3, 4].
(3) The pressure hull is divided into a small number of separate sections by

bulkheads, changes of diameter, or changes of frame spacing or geometry. These
are all potentially signi®cant re¯ectors of structure-borne energy incident in the
pressure hull, and need to be taken into account in any predictive procedure.
In the discussion that follows, the combination of the pressure hull (including

the frames) and re¯ectors such as bulkheads is considered, in the presence of an
external ¯uid. The external ¯uid has three distinct effects [5]: mass loading of the
structure; adding effective damping through radiation; and ¯uid short-circuiting
of vibration attenuators, including the frames and bulkheads. The frequency
range of interest may encompass the ¯at plate coincidence frequency, the
frequency at which ¯exural wavelengths match acoustic wavelengths (see
reference [5]). Radiation loss from ¯exural waves on the structure can occur
below that frequency due to the effects of curvature and wave scattering by the
frames. Indeed radiation damping tends to dominate intrinsic structural damping,
producing loss factors typically in the region of 10ÿ2 to 10ÿ1. Modal overlap is
consequently high, and the global structure non-reverberant for ¯exural-like
waves (though local build-up of reverberant energy remains a possibility).
The isolated re¯ectors mentioned in (3) above can be analysed by deterministic

theory which assumes perfect cylindrical symmetry, and such analysis often
suggests that it is possible to achieve very low transmission by suitable design.
For example, it is possible to design different frame spacings for different
sections of the submarine such that pass bands in one section coincide with stop
bands in another. However, it is generally found in practice that the predicted
low transmission is not attained. A mechanism for this will be suggested,
whereby the re¯ector is ``short-circuited'' by the cumulative effect of small-scale
irregularities in the structure, which produce a small but signi®cant degree
of coupling between different wavetypes. For long range transmission, it is
essential to include such effects in the prediction methodology. In this paper a
statistical approach to this problem is proposed, based on an analysis of power
¯ow on a ribbed cylinder. One begins by reviewing the underlying dispersion
characteristics of the corresponding perfectly regular structure.

2. DISPERSION CHARACTERISTICS OF A FLUID-LOADED RIBBED
CYLINDER

The vibration transmission characteristics of an in®nite regularly-framed
rotationally-symmetric ¯uid-loaded thin cylindrical shell are considered. For
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such a structure, it is possible to decompose the global problem into a set of
independent one-dimensional problems, indexed by ``angular order'' n=0, 1,
2, . . . . Each component of the solution then has circumferential behaviour like
cos ny or sin ny, where y is the circumferential angle. The detailed theory was
described and experimentally veri®ed for the in vacuo case by Hodges et al. [3, 4].
Fluid loading is formally incorporated into the scheme by adding to the

kinetic energy extra terms representing the response of the ¯uid to radial motion
of the shell, as determined by the kinematic boundary condition. This
incorporates both mass loading and radiation damping. The determination of
the ¯uid-loaded transmission modes then involves the solution of a matrix
eigenvalue problem. This cannot however be solved by standard matrix
procedures due to the non-algebraic frequency dependency in the ¯uid-loading
terms. Instead, a non-linear equation solver is adopted. For each transmission
mode, several relevant quantities can be readily calculated from the
eigensolution, including the frequency, group velocity, radiation loss factor,
mode shape and admittance.
These propagation modes are indicated in Figure 1 on a frequency/angular

order diagram. This ®gure is calculated using the geometric parameters of the
model pressure hull which was studied by Hodges et al. [3, 4], now assumed to
be immersed in water. Speci®cally, the ®gure shows the frequency/wavenumber
spectrum for radial acceleration on an ideal ¯uid-loaded ribbed cylinder at a
position six frame-bays remote from an assumed radial drive. To ensure that all
¯exural-like transmission modes contribute with similar levels, the drive is taken
to be temporally white, and spatially white in the driven bay (i.e., ``rain-on-the-
roof '' drive in one bay), and the response is calculated at a position within the
frame bay which is not a simple fraction of the bay length (thus avoiding any
obvious nodes). At each frequency and angular order in the diagram, a
horizontal tick is plotted whose length is linearly related to the logarithm of the
computed response, with a 40 dB dynamic range. Regions of heavy markings
therefore identify the ¯exural-like pass bands of the structure.
The positions and widths of the pass and stop bands vary with angular order.

This predicted pattern has been well validated by comparison with detailed
model scale measurements [3, 4]. A full description of the pattern is beyond the
scope of this paper, but note that sketches of mode shapes at a selection of
points in the ®gure were shown in Figure 2 of reference [4] for the in vacuo case.
The only aspect of the pattern which needs to be discussed here relates to the
obvious qualitative difference between the left and right regions, separated in
Figure 1 by the shaded region.
Consider ®rst the problem of a single frame on an in®nite cylinder. An

incident propagating wave, of any type, will in general be partly re¯ected and
partly transmitted by such a frame. A general theorem relating to vibration
transmission and re¯ection by a symmetrical scatterer (like the frame) leads one
to expect that, in the absence of damping, there will be certain frequencies at
which perfect re¯ection occurs, and others at which perfect transmission occurs
[6]. This is indeed found to be the case here, as is illustrated in Figure 2 which
shows the transmission coef®cient for ¯exural waves of angular order n=24,
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plotted against frequency. At certain frequencies this falls to zero (perfect
re¯ection), and at others it rises to unity (perfect transmission). These
frequencies of perfect transmission are associated with ``coincidence'' between
the trace wavenumber of predominantly-¯exural waves in the shell and the
wavenumber of ¯exural or torsional waves in the frame [7]. The frequencies of
perfect transmission and perfect re¯ection vary in a systematic way with angular
order. The shaded region of Figure 1 shows the trend. Speci®cally, the
boundaries of the region follow the two frequencies of perfect re¯ection marked
with arrows in Figure 2, and just inside the region are found two frequencies of
perfect transmission. In terms of the behaviour of the periodically-ribbed
cylinder, ``perfect transmission'' implies very strong coupling between adjacent
bays so that the stop band width tends to be very small, while conversely

Figure 1. Pass- and stop-band structure for a typical ribbed cylinder geometry, which corre-
sponds to the small-scale model studied by Hodges et al. [3, 4]. See text for detailed description.
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``perfect re¯ection'' implies very weak coupling so that the pass-band width
tends to be small.
One can now divide the propagation modes into four classes, which will form

the basis of the later analysis. For wavenumber±frequency values to the left of
the shaded region in Figure 1 the in¯uence of the frames is inertia dominated.
Here are found the ``type L'' ¯exural modes, which tend to have wide pass-bands
and high axial group velocities (away from the edges of the pass bands), and
usually also have high radiation damping. Conversely the ``type R'' modes to the
right, where the in¯uence of the frames is stiffness dominated, have narrow pass-
bands. The frames are effective re¯ectors in this region so that the coupling
between adjacent bays is weak. These modes typically have group velocity
vectors which are predominantly circumferential, so that the axial component is
small. They also have low radiation damping. Type L and type R modes, despite
their differences, turn out to have spatial attenuation rates which are generally
comparable, and rather high, as will be shown later. The transition region
between the two is associated with ``type C'' modes (the shaded region on Figure 1),
and these are signi®cantly different in their behaviour. They have the broadest pass
bands of all ¯exuralmodes, and they also have rather low radiation damping, so that
they tend to have relatively low spatial attenuation rates. Finally it is useful to group
all in-surface modes, including compression and shear types, into a single class,
designated ``IS''. These are con®ned to the region to the left of the relevant line on
Figure 1. Formally, they are de®ned as those propagationmodes inwhichmore than
half the strain energy is associated with in-surfacemotion rather than bending. They
have the highest group velocities of all, and very low spatial attenuation rates. Any
mode havingmore than half its strain energy associatedwith bending deformation is

Figure 2. Transmission coef®cient across a single frame on an in®nite unribbed cylinder, for
n=24. Notice that perfect transmission occurs at certain frequencies, and perfect re¯ection at
others. The frequencies marked with arrows form the boundaries of the ``Type C'' modes for this
value of n.
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classi®ed as type L, type C or type R depending on where it falls in Figure 1. The key
propertiesof thefourmodetypesaresummarised inqualitativeforminTable1.

3. STATISTICAL MODELLING

3.1. REALISTIC STRUCTURES

This deterministic model of a perfectly regular structure is adequate to
represent the characteristics of transmission over a few frame bays. However for
long-range transmission on a realistic structure, a number of complicating
factors need to be taken into account: (1) the ®nite length of the structure; (2)
the effect of isolated re¯ectors (e.g., bulkheads); (3) the effect of irregularities
(e.g., attachments, pressure hull penetrations, and random constructional
imperfections).
As discussed earlier, the transmission of ¯exural waves past the isolated

re¯ectors may be predicted to be quite small on the basis of idealised modelling
which assumes the cylinder is perfect. In this case, (3) above becomes crucially
importantÐalthough the scattering from an individual irregularity is typically
small, the cumulative effect is signi®cant, producing a weak ``diffusive'' scatter
between angular orders which can short circuit the theoretical low transmission.
Of course all the above effects can in principle be modelled deterministically, by
augmenting the idealised theory. However this deterministic approach either
loses accuracy (because the assumptions made in order to make the problem
tractable become invalid) or the degree of complexity in the problem becomes
unmanageable. It is inevitable then that one considers methodologies where the
irregularities and their effects are represented statistically in some way.

3.2. SUBSYSTEM BREAKDOWN

One starts by considering the standard statistical approach for structural
vibration problemsÐStatistical Energy Analysis or SEA (see references [8, 9]).
Within SEA, a structure is ®rst divided into discrete subsystems within which
response levels are assumed to be homogeneous. Linear equations are then set
up to represent energy exchange and balance between these subsystems. By
solving these, it is possible to deduce the response level within each subsystem in
terms of the energy input from excitation sources.
Perhaps the most obvious subsystem breakdown of the pressure hull would be

into individual frame bays, frames etc. However it is well known that a

TABLE 1

Qualitative characteristics of the four groups of waves on a ribbed cylinder

Type L C R IS

Pass band width wide wide narrow very wide
Axial group velocity fast fast slow very fast
Radiation damping high fairly low low moderate
Spatial decay fast fairly slow fast very slow
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breakdown of a periodic or near-periodic structure into periodic elements in this
way produces an SEA model with qualitatively the wrong behaviour (see
references [8, 9]), essentially because SEA neglects coherence effects which are
crucial in determining the transmission characteristics of the periodic structure.
The present approach is to take a macro-scale view of the pressure hull

structure, regarding the ribbed cylinder as a kind of composite material with
rather complicated dispersion characteristics for vibration transmission. One can
then choose physical subsystems which are many frame bays in length. There are
now the usual con¯icting considerations with regard to SEAÐbreakdown into
small subsystems produces high resolution, but larger subsystems may be
necessary in order to satisfy the SEA requirement for high modal density and
overlap per subsystem. Here a derivative of SEA will be discussedÐthe
statistical power-¯ow methodÐwhich attempts to satisfy both objectives, using
physical subsystems which are as large as is sensible, but allowing for variation
of levels within each subsystem consistent with the known transmission and
radiation characteristics of the various wave®elds.
The ®rst breakdown is into physical sections or ``chunks''. There may be half

a dozen or so chunks to a submarine, and they are what might most easily be
inferred from a drawing, without any reference to vibrationÐthe Main
Machinery Compartment or Reactor Compartment, for example. They relate to
sections of pressure hull in which one would expect no sudden changes in
vibration levels or transmission characteristics. A chunk boundary would be
placed at a signi®cant re¯ector (e.g., a bulkhead) or a change in transmission
characteristics (due to a change in mean frame spacing or shell thickness, say).
Ideally a chunk should be many bays long, so that the in®nite-cylinder
dispersion characteristics can become established within a chunk. Such evidence
as is available suggests that ``many bays long'' in this context means ``at least
three bays long''. This estimate is based on simulation experiments to establish
the minimum number of periodically placed ribs on an otherwise unribbed
cylinder required in order to see evidence of the stop/pass band structure. A
further breakdown into different wave types is now necessary, to represent in
some way the wide range of transmission characteristics. Again, an extremely
®ne subdivision into individual propagation modes and individual angular orders
is entirely feasible. However a coarser breakdown into four wavetypes has been
chosen. These are the in-surface (IS) modes and the ¯exural L-, C- and R-modes
discussed earlier.
The statistical model predicts expected response levels based on averaged

quantities relating to the dynamical properties of the structure and ¯uid. These
average quantities are easily calculated from the characteristics of the
transmission modes of the ideal ¯uid-loaded structure. The ribbed-cylinder
model allows these modes to be calculated over a discrete array of values for n
and Bloch wavenumber q (see Hodges et al. [3]). The de®nition of the Bloch (or
Floquet) wavenumber is that the bay-to-bay phase change in a travelling wave is
exp[iqd] where d is the frame spacing. In a structure Nq bays in length, the
number of normal modes within each pass band will be Nq. To calculate an
approximation to these modes, the Bloch wavenumber is allowed to take Nq
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discrete values equally spaced between zero and the Nyquist wavenumber p/d.
The characteristics of each transmission mode are calculated, including the
frequency, group velocity, radiation loss factor, and mode shape information
(within a bay).
To perform the averaging, frequency bins are ®rst selected: in the case to be

presented here these are bands of constant 500 Hz bandwidth. Average
quantities are accumulated in these bins for each wavetype (L, C, R and IS) by
looping over all the transmission modes. For each mode, the corresponding type
is established, as discussed above, by reference to its strain energy distribution,
its frequency, and its angular order. The average modal density per frame bay
N̂� f � ( f being frequency in Hz) is obtained simply by counting the modes in
each bin and dividing by the bin width and by Nq. (It is convenient to work in
terms of an axial distance x̂ which is non-dimensionalised on the bay spacing d.
All quantities based on this non-dimensional distance will be denoted by a
circum¯ex.) The results become independent of Nq provided it is suf®ciently
large. For computational purposes a value Nq=48 was used, large enough to
sample the dispersion characteristics adequately.
Next, the power input must be calculated. There is a standard result for the

average power input into a spatially homogeneous system without ¯uid loading
(see for example Lyon and De Jong [9], equation (2.2.22)): the input
conductance G is given by

G� f � � N� f �=4M, �1�

where N( f ) is modal density (in modes/Hz) and M is the mass of the structure.
This result must be modi®ed for the present problem, in two respects. In the
presence of signi®cant ¯uid loading the effective mass will vary from mode to
mode because of local ¯uid motion, and this must be taken into account. Also,
the ribbed cylinder is not homogeneous, and one wishes to allow the possibility
of, for example, forcing on the frames.
An input conductance for any particular transmission mode of the structure

can be de®ned as the power input per bay resulting from driving the structure
with the corresponding generalised force applied randomly in time. The average
input conductance of each particular mode ``type'', denoted by GL, GC, GR and
GIS , is then the average of this quantity over all modes of the appropriate type
within the band. Equation (1) applies to Ga in place of G, provided N( f )/M is
interpreted to mean the mode-by-mode aggregate over type-a modes, allowing
for the varying effective modal mass, where the subscript a denotes any of the
mode types L, C, R or IS.
To allow for a particular pattern of forcing, this formula can be modi®ed by

including a dimensionless mode-shape factor. For example, for point forcing
with mean squared amplitude jF j2 at position x within the frame bay and in
direction e, the power input to mode type a is given approximately by

Pin � jF j2Gax�x, e�, �2�
where the factor x(x, e) is computed as the mean square over the modes in the
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band of the mode shape at position x and in direction e (where mode shapes are
assumed to be normalised to have a spatial mean-square of unity). The quantity
x(x, e) can be used in a reciprocal manner to obtain responses at a speci®c site
within a frame bay from the SEA energy. Thus the mean square velocity
response at position x and in direction e is given by

�Energy per bay=Effective mass per bay�x�x, e�: �3�

Other quantities required by the statistical models, such as group velocity
ĉa and radiation loss factor Z�rad�a , are calculated as simple averages of the
individual modal quantities. The contribution to damping from structural effects
is assumed to be constant, a loss factor Zstruct=0�005 being used for all
wavetypes, so that the total loss factor for modes of type a is

Za � Zstruct � Z�rad�a : �4�

A particularly signi®cant quantity derived in this way is the average spatial
attenuation rate associated with modes of type a:

l̂a � Zao=ĉa: �5�

This quantity is plotted against frequency in Figure 3. The values cover a very
wide range, so to give a clear view the vertical scale is doubly logarithmic: it
shows attenuation in (decibels per frame bay) on a logarithmic scale. In broad
terms, this con®rms the qualitative account given in Table 1. The type L and
type R modes tend to have the fastest attenuation rates, sometimes remarkably
fast. The type C modes are, on the whole, more slowly attenuated, and the type
IS modes only attenuate very slowly indeed.

Figure 3. Spatial attenuation rate along the ¯uid-loaded ribbed cylinder, in dB per frame bay:
ÐÐ, type L; ± ± ± ± , type C; � � � � , type R; ± � ± � ± , type IS.
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3.3. POWER-FLOW ANALYSIS WITHOUT COUPLING

The slightly unusual subsystem breakdown de®ned above could, of course, be
used with standard SEA. SEA parameters like modal densities and coupling loss
factors are easily computed from the deterministic model discussed above. The
SEA equations are stated at the end of this subsection. The dif®culty for SEA is
that many of the ¯exural subsystems are non-reverberant, largely due to the high
rates of radiation damping provided by the external ¯uid. Thus the assumption
of homogeneous response within a subsystemÐintrinsic to SEAÐis invalid in
principle (although the extent of error thus incurred is not obvious without
calculation).
Instead, for these quasi-one-dimensional subsystems, it turns out to be quite

easy to implement an analysis of power ¯ow which ignores phase information
but is otherwise in a certain sense ``exact''. This theory corresponds to the
in®nite limiting case of the ``ASEA'' sequence of approximations de®ned by
Heron [10]. Consider two ``chunks'' of the pressure hull, coupled end-to-end
through a bulkhead, each chunk carrying four subsystems. Since each chunk is a
spatially uniform section of ribbed cylinder, then a theory which ignores phase
only requires two parameters to specify the complete energy ®eld in any one
subsystem: the power ¯ows in left-travelling and right-travelling ``energy waves''.
For de®niteness, de®ne the vectors Lj and Rj such that the left-travelling power
¯ows in the jth chunk associated with the various internal subsystems are given
at the right end by Lj, and the corresponding right-travelling power ¯ows at the
left end by Rj. Each of these ``energy waves'' will decay exponentially as it
travels, at the spatial rate l̂a de®ned in equation (5). Apart from ``near ®elds''
around any localised energy source, the energy ®eld in a given subsystem can be
described exactly (within the context of a theory ignoring phase) as a linear
combination of these two exponential basis functions.
It is now straightforward to obtain a closed set of equations for these

power ¯ows, by considering the re¯ection and transmission behaviour at the
junction, together with perfectly re¯ecting boundaries at the ends of the
system. Some energy input is needed, of course. The simplest way to include
this for a ®rst examination of the results of this theory is to inject power at
one end of the system at a known rate, and solve for the resulting
distribution of energy density over the whole system. The system is illustrated
schematically in Figure 4.

Figure 4. Schematic diagram of two-chunk system, and basis functions for ``energy waves''.
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Power ¯ow associated with the different subsystems has different rates of
exponential decay with distance. The amplitudes of the power ¯ows by the time
they reach the far end of the chunks can thus be represented by two diagonal
matrices LLL1, LLL2 such that, for example, the right-travelling energy in chunk 1 has
a vector of power ¯ows at the right end (i.e., the bulkhead) of LLL1R1. The
elements of these matrices are simply given in terms of the exponential rates l̂a
and the lengths of the chunks D̂j.
De®ne the power input to be a vector PÐfor de®niteness, assume that the

power input is broadband, uniformly distributed in frequency over a band
centred at f Hz and of bandwidth B Hz. For simplicity of presentation, assume
that the in®nite system characteristics of chunk 2 are the same as those of chunk
1, so that, for example, the values of N̂a and ĉa are the same. Re¯ection and
transmission at the bulkhead can then be characterised by just two matrices, rrr, ttt
respectively. (Extending the theory to the more general case is straightforward,
but requires distinct re¯ection and transmission matrices for waves incident from
the two directions.) Note that the matrix rrr is symmetric, while the matrix ttt
satis®es

N̂aĉataa 0 � N̂a 0 ĉa 0ta 0a: �6�

The equations of energy ¯ux balance are then as follows:

R1 �LLL1L1 � P,

L1 �rrrLLL1R1 � tttLLL2L2,

R2 �tttLLL1R1 � rrrLLL2L2,

L2 �LLL2R2: �7�

It is straightforward to solve this set of linear equations, and hence ®nd
the energy distribution across the whole system. Examples will be shown
shortly.
To relate these power ¯ows to the subsystem energies of an SEA model, ®rst

de®ne a quantity Ta�x̂� for each subsystem a at axial position x̂, derived from
the sum of the local power ¯ows in the two directions:

Ta�x̂� � �Ra e
ÿl̂ax̂ � La e

ÿl̂a�D̂jÿx̂��=ĉaN̂aB: �8�

This quantity will be referred to as the ``temperature'' of the subsystem at
position x̂ since its spatial average

�Ta � 1

D̂j

�D̂j

0

Ta�x̂� dx̂ �9�

is the usual SEA ``temperature'', or mean energy per mode of the subsystem in
chunk j. The total subsystem energy is then

Ea � �TaD̂jN̂aB: �10�



824 M. BLAKEMORE ET AL.

For reference, the standard SEA equations are

Pa � ZaoEa �
X
a 0 6�a

o�Zaa 0Ea ÿ Za 0aEa 0 �, �11�

where Pa is the power input to subsystem a and {Zaa 0} are the coupling loss
factors, and where the subscripts a, a 0 are now to be understood to range over
each subsystem within each chunk of the whole system. The coupling loss factors
can be derived in the usual way from the re¯ection and transmission coef®cients
at the bulkhead: for two subsystems in the same chunk j

Zaa 0 � raa 0 ĉa=2oD̂j �a 6� a 0�, �12�

while for subsystems a in chunk j and a 0 in an adjacent chunk k separated by the
bulkhead,

Zaa 0 � taa 0 ĉa=2oD̂j: �13�

3.4. POWER-FLOW ANALYSIS WITH COUPLING

Before showing any example calculations, a development of the theory to
allow for the scattering effects of irregularities is discussed. Motivated by SEA,
the proposed approach uses a heat-diffusion analogy between the parallel energy
paths within each chunk. Some ``leakage'' between the paths at a rate
proportional to the local difference of ``temperatures'' is allowed. For clarity of
exposition, consider just two such coupled paths. Recall that the right sides of
the corresponding SEA equations take the form

Z1oE1 � o�Z12E1 ÿ Z21E2� �14�
and

Z2oE2 � o�Z21E2 ÿ Z12E1�, �15�
where SEA reciprocity requires that

oN̂1Z12 � oN̂2Z21 � b12 �say�: �16�
One wishes to replace these with equations representing distributed coupling

along the length of the chunk. The ®rst stage is to write them in terms of the
average ``temperatures'' �T1 and �T2:

Z1oN̂1
�T1 � b12��T1 ÿ �T2� �17�

and

Z2oN̂2
�T2 � b12��T2 ÿ �T1�, �18�

(where a common factor of the length of the chunk has been removed). Now
replace the average temperatures with the spatially-varying temperatures, and, by
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analogy with heat diffusion, write

C1@
2T1=@x̂

2 � D1T1 � b12�T1 ÿ T2�
C2@

2T2=@x̂
2 � D2T2 � b12�T2 ÿ T1�,

�19�

where

D1 � oZ1N̂1, D2 � oZ2N̂2 �20�
and C1, C2 are effective diffusivities. These diffusivities are determined by the
requirement that, in the absence of the coupling term, each path should have the
correct rate of spatial decay, as provided by the deterministic model. This
requires

C1 � ĉ21N̂
2
1=D1, C2 � ĉ22N̂

2
2=D2 �21�

in terms of the averaged group velocities ĉ1, ĉ2.
The coupling term involves the constant b12 whose value, in practice, would

probably be determined empirically by matching the length-scales of
breakthrough energy transport to those found from measurements. An
experimental methodology for such measurements would follow the work
described by Hodges et al. [4]Ðthe vibration ®eld at different axial distances
from a localised excitation could be decomposed into separate angular orders,
and a picture built up experimentally which would correspond to, for example,
Figure 7 below.
Generalised in the obvious way to allow for the four paths (or subsystems) per

chunk, these equations can be written

C1 0 0 0

0 C2 0 0

0 0 C3 0

0 0 0 C4

26664
37775

T 001
T 002
T 003
T 004

26664
37775

�

D1 � b12 � b13 � b14 ÿb12 ÿb13 ÿb14
ÿb12 . .

. � � � � � �

ÿb13 ..
. . .

. � � �

ÿb14 ..
. ..

. . .
.

266666664

377777775
T1

T2

T3

T4

26664
37775: �22�

But these are just the familiar equations for a four-degree-of-freedom vibrating
system, with spatial derivatives in place of time derivatives, and with the two
matrices on the left- and right sides playing the roles of ``mass'' and ``stiffness''
matrices. One can solve them by a ``modal'' transformation. The (generalised)
eigenvalues of this pair of real, symmetric matrices give the spatial decay rates
(squared) of the eigenvector combinations of energy levels in the various
subsystems. If one constructs the matrix Q whose columns are the eigenvectors
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(normalised with the ``mass matrix'', i.e., the diagonal matrix of diffusivities),
then it can be used to map energy vectors into and out of these eigenvector
combinations.
The result is that the analysis of the previous subsection carries over directly

to this new case, provided only that one replaces the matrices LLL1, LLL2 by the
combinations QLLL1Q

ÿ1, QLLL2Q
ÿ1, where the diagonal matrices LLL1, LLL2 here are

calculated like the earlier ones, but using the eigenvalues for the decay rates.
This formalises the translation into and out of modal co-ordinates in order to
calculate the energy decay factors from end to end of the chunks.

4. EXAMPLE CALCULATIONS

For the purposes of illustration, a submarine structure consisting of two
``chunks'' of pressure hull separated by a bulkhead (modelled as a thin ¯at plate)
will be considered. The length of chunk A will be D̂A � 10 frame bays, and that
of B will be D̂B � 15 bays. A normalised input of 1 W/Hz will be assumed into
each of the four subsystems of chunk A at the end remote from the bulkhead.
The ribbed cylinder geometry corresponds to the small-scale model studied by
Hodges et al. [3, 4].
The spatial average of the SEA temperature (energy per mode �Tj) within each

of the four subsystems of chunks A and B is plotted in Figures 5(a±d), for the
different subsystem types. Each graph displays results calculated using both
``standard'' SEA and the statistical power ¯ow method without ``leakage''
coupling. On each graph the two predictions for chunk A (the driven section) are
virtually indistinguishable. However within chunk B very large differences are
observed, particularly for types R and C, corresponding to transmission modes
having the most rapid spatial decay. In effect standard SEA is assuming that the
energy incident on the chunk boundary is the same as the spatially averaged
result. This is much greater than is actually the case (because of the rapid rate of
spatial decay in some subsystems). Therefore a greater transfer of energy into
chunk B is predicted, with consequently higher estimated levels.
These results may be compared directly with those in Figures 6(a±d), which

show the same comparison calculated with non-zero values for the coupling
parameters bjk. Purely for illustrative purposes these coupling terms are given
values which are a constant multiple of �N̂j � N̂k�oZstruct, in terms of the
damping rate Zstruct due to structural damping alone, which is set at a constant
value 0�005 for all subsystems. This models ``a little coupling of everything to
everything''. The diagonal terms of the matrix appearing on the right side of
equation (22) also contains the contribution from radiation damping, which
varies with mode type and with frequency, and is in general much bigger than
the structural contribution.
The coupling value used to compute Figure 6 is only bjk �
�N̂j � N̂k�oZstruct=1000. Even with this tiny amount of coupling, the very low
levels predicted in chunk B for types R and C are substantially increased. The
main mechanism for this is that the bulkhead forms only a very weak re¯ector
for IS waves, and to a lesser extent for type L waves. Energy transmits into
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chunk B by these mechanisms, then can scatter back into types R and C. By the
far end of chunk B, the SEA temperatures of types R and C had been raised,
due to the coupling, to the extent where they were comparable with that of type
L. Comparison of Figures 5 and 6 might suggest that the presence of irregularity
brings the behaviour more in line with the predictions of ``traditional'' SEA.
This is a misleading interpretation. SEA overpredicts the response in chunk B
when the ®elds are non-reverberant, a conclusion not altered by irregularity. The
effect of leakage coupling is to raise the levels in chunk B by an entirely different
mechanism, not included in the SEA model. If it were to be included (in some
average sense), the SEA predictions would diverge further from the power-¯ow
predictions.
To gain some physical insight into the effect of coupling, some plots of spatial

distribution of temperature Tj (x) are presented. The temperature is plotted at
each bay of the structure. The bulkhead is at the end of bay 10, and an obvious
drop of levels occurs there. Figure 7(a) and (b) show two representative results
without coupling, for two different frequency bands. Figures 7(c) and (d) show
the results for the same frequency band as Figure 7(b), with coupling
bjk � �N̂j � N̂k�oZstruct=1000 (as in Figure 6) and bjk � �N̂j � N̂k�oZstruct=10,
respectively.
The non-reverberant nature of some of the subsystems is immediately

apparent in the cases without coupling. For the higher frequency shown here, in
Figure 7(b), the type L modes particularly are showing a very rapid spatial
decay. This can be attributed mainly to their high damping (predominantly by
radiation). It is no wonder, with such extreme non-reverberant behaviour, that
SEA does not predict the energy distribution very accurately.
Notice in Figure 7(b) that because the type L modes show rapid spatial decay

and are also coupled to the type IS modes, the resulting pattern has a local
maximum near the bulkhead. What is happening is that energy initially fed into
the type L modes decays rapidly, so that little of it reaches the bulkhead.
However, energy reaches the bulkhead quite ef®ciently via the type IS modes,
and some of it is then scattered into type L modes, travelling outwards from the
bulkhead in both directions. These again decay rapidly, producing the local
maximum.
As one would have expected, in the presence of coupling the very low levels,

especially those associated with type L modes, are raised. In compensation, the
rate of decay of the type IS modes becomes progressively faster, as more energy
leaks out of these modes into other, more highly damped, mode types. By the
case shown in Figure 7(d), all four mode types get rather rapidly locked
together, and decay along parallel tracks. The particular proportions of energy
in the four types when they are thus locked together are those of the eigenvector
having the lowest decay rate. This is always the only eigenvector all of whose
terms are positive, so that it is the only one which has physical signi®cance in
isolation. The proportions given by this eigenvector play somewhat the same role
in this coupled system as does the condition of ``equipartition of energy'' in
normal SEA: it is the state the system tends towards given suf®cient length for
the pattern to develop. Note that in Figures 7(c, d) two of the curves approach
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very similar levels at higher frequencies. This is of no deep signi®cance, simply a
coincidence of the parameter values in this particular frequency band.

5. CONCLUSIONS

A statistical approach for modelling the transmission of vibration along a
realistic submarine pressure hull has been developed. Fluid-loading effects are
included in the modelling and are signi®cant. Standard Statistical Energy
Analysis is not adequate to deal with the rather special geometry of the
submarine pressure hull, but the proposed new model captures details of
behaviour which are in accordance with experimental ®ndings. In particular,
``leakage'' of energy between angular orders as a result of irregularities in the
hull structure can ``short-circuit'' a re¯ector such as a bulkhead or a change of
frame spacing. Failure to account for this leakage in a predictive model can lead
to very serious over-prediction of the effectiveness of certain vibration control
measures.
The model is based on a novel subsystem breakdown, in which transmission

modes on sections of the ribbed cylinder are grouped into four classesÐthree
classes of predominantly ¯exural motion (having different transmission and
damping characteristics) and one class of predominantly in-surface motion. In
the absence of experimental data for the rates of energy leakage between these
different subsystems, numerical examples have been presented which are purely
illustrative of the possible behaviour. Even so, it has been clearly shown that
only very small levels of leakage are required to produce signi®cant effects on
the overall pattern of vibration of a pressure hull.
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